Perceptual Learning Improves Contrast Sensitivity of V1 Neurons in Cats
نویسندگان
چکیده
BACKGROUND Perceptual learning has been documented in adult humans over a wide range of tasks. Although the often-observed specificity of learning is generally interpreted as evidence for training-induced plasticity in early cortical areas, physiological evidence for training-induced changes in early visual cortical areas is modest, despite reports of learning-induced changes of cortical activities in fMRI studies. To reveal the physiological bases of perceptual learning, we combined psychophysical measurements with extracellular single-unit recording under anesthetized preparations and examined the effects of training in grating orientation identification on both perceptual and neuronal contrast sensitivity functions of cats. RESULTS We have found that training significantly improved perceptual contrast sensitivity of the cats to gratings with spatial frequencies near the "trained" spatial frequency, with stronger effects in the trained eye. Consistent with behavioral assessments, the mean contrast sensitivity of neurons recorded from V1 of the trained cats was significantly higher than that of neurons recorded from the untrained cats. Furthermore, in the trained cats, the contrast sensitivity of V1 neurons responding preferentially to stimuli presented via the trained eyes was significantly greater than that of neurons responding preferentially to stimuli presented via the "untrained" eyes. The effect was confined to the trained spatial frequencies. In both trained and untrained cats, the neuronal contrast sensitivity functions derived from the contrast sensitivity of the individual neurons were highly correlated with behaviorally determined perceptual contrast sensitivity functions. CONCLUSIONS We suggest that training-induced neuronal contrast gain in area V1 underlies behaviorally determined perceptual contrast sensitivity improvements.
منابع مشابه
Effects of perceptual learning on local stereopsis and neuronal responses of V1 and V2 in prism-reared monkeys.
Visual performance improves with practice (perceptual learning). In this study, we sought to determine whether or not adult monkeys reared with early abnormal visual experience improve their stereoacuity by extensive psychophysical training and testing, and if so, whether alterations of neuronal responses in the primary visual cortex (V1) and/or visual area 2 (V2) are involved in such improveme...
متن کاملCorrigendum: Neuronal basis of perceptual learning in striate cortex
It is well known that, in humans, contrast sensitivity training at high spatial frequency (SF) not only leads to contrast sensitivity improvement, but also results in an improvement in visual acuity as assessed with gratings (direct effect) or letters (transfer effect). However, the underlying neural mechanisms of this high spatial frequency training improvement remain to be elucidated. In the ...
متن کاملChronic morphine exposure affects contrast response functions of V1 neurons in cats.
Opiates disrupt neural functions in many brain areas, including visual cortex. Previous studies have indicated substantial changes of many neuronal response properties induced by chronic morphine exposure in the visual information processing system. However, it remains unclear whether neuronal contrast coding is also affected. To investigate this issue, we measured the contrast response functio...
متن کاملA Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex
Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising mod...
متن کاملPerceptual Learning: Is V1 up to the Task?
Our ability to make fine visual discriminations improves with practice, and so at some level so must our visual system. A new paper reports that the receptive field structure of a neuron can be fine-tuned for different visual tasks. These findings raise important questions about the circuitry and mechanisms that underly perceptual learning.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010